Distributed Saddle-Point Subgradient Algorithms With Laplacian Averaging
نویسندگان
چکیده
منابع مشابه
Subgradient Methods for Saddle-Point Problems
We consider computing the saddle points of a convex-concave function using subgradient methods. The existing literature on finding saddle points has mainly focused on establishing convergence properties of the generated iterates under some restrictive assumptions. In this paper, we propose a subgradient algorithm for generating approximate saddle points and provide per-iteration convergence rat...
متن کاملSVM via Saddle Point Optimization: New Bounds and Distributed Algorithms
Support Vector Machine is one of the most classical approaches for classification and regression. Despite being studied for decades, obtaining practical algorithms for SVM is still an active research problem in machine learning. In this paper, we propose a new perspective for SVM via saddle point optimization. We provide an algorithm which achieves (1 − )-approximations with running time Õ(nd +...
متن کاملPrivacy Preservation in Distributed Subgradient Optimization Algorithms
In this paper, some privacy-preserving features for distributed subgradient optimization algorithms are considered. Most of the existing distributed algorithms focus mainly on the algorithm design and convergence analysis, but not the protection of agents' privacy. Privacy is becoming an increasingly important issue in applications involving sensitive information. In this paper, we first show t...
متن کاملDomain Decomposition Algorithms for Saddle Point Problems
In this paper, we introduce some domain decomposition methods for saddle point problems with or without a penalty term, such as the Stokes system and the mixed formulation of linear elasticity. We also consider more general nonsymmetric problems, such as the Oseen system, which are no longer saddle point problems but can be studied in the same abstract framework which we adopt. Several approach...
متن کاملFrank-Wolfe Algorithms for Saddle Point Problems
We extend the Frank-Wolfe (FW) optimization algorithm to solve constrained smooth convex-concave saddle point (SP) problems. Remarkably, the method only requires access to linear minimization oracles. Leveraging recent advances in FW optimization, we provide the first proof of convergence of a FW-type saddle point solver over polytopes, thereby partially answering a 30 year-old conjecture. We a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Automatic Control
سال: 2017
ISSN: 0018-9286,1558-2523
DOI: 10.1109/tac.2016.2616646